Q. Let $f:\left[0, \frac{5}{2}\right) \rightarrow\left(\frac{1}{2}, 3\right]$ be a function defined as $f(x)=\frac{[x]+1}{\{x\}+1}$ where $[ \,\,\,]$ and $\{\,\,\,\}$ represent the greatest integer function and fractional part. Given that $\min \cdot\left(\displaystyle\lim _{x \rightarrow 1^{-}} f(x), \displaystyle\lim _{x \rightarrow 1^{+}} f(x)\right)=\frac{m}{p}$, G.C.D. $(m, p)=1$ and maximum of the values of $x$, at which $f$ is discontinuous, is equal to $f(k) .$ Find the value of $p^{2}-k^{2} m^{2} .$
Continuity and Differentiability
Solution: