Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f :(0,1) \rightarrow R$ be defined by $f ( x )=\frac{ b - x }{1- bx }$, where be is a constant such that $0< b <1$. Then

JEE AdvancedJEE Advanced 2011

Solution:

$f ( x )=\frac{ b - x }{1- b x }$
Let $y =\frac{ b - x }{1- bx }$
$\Rightarrow x =\frac{ b - y }{1- by }$
$0< x <1 \Rightarrow 0<\frac{ b - y }{1- by }<1$
$\frac{ b - y }{1- by }>0 \Rightarrow y < b$ or $y >\frac{1}{ b }$
$\frac{ b - y }{1- by }-1<0 \Rightarrow -1< y <\frac{1}{ b }$
$\therefore -1< y < b$