Q. Let $f : [0, 1] \to R$ be an injective continuous function that satisifes the condition $-1 < \, f (0) <\,f (1) <\,1$ Then, the number of functions $g : [-1, 1] \to [0, 1]$ such that $(gof) (x) =x$ for all $x \in\left[0,1\right]$ is
KVPYKVPY 2018
Solution: