Q.
Let $E_1$, $E_2$, $E_3$, ..., $E_n$ be independent events with respective probabilities $p_1$, $p_2$, $p_3$ ..., $P_n$. Find the probability that $(i)$ none of them occurs $(ii)$ atleast one of them occurs.
(i)
(ii)
(a) $(1 - p_1)(1-p_2) \cdots (1 - p_n)$
$1-[(1 - p_1)(1-p_2) \cdots (1 - p_n)]$
(b) $(1 -p_1)(1-p_2)$
$1-[(1 -p_1)(1-p_2)]$
(c) $(p_1-p_2)$
$1-(p_1-p_2)$
(d) none of these
(i) | (ii) |
---|---|
(a) $(1 - p_1)(1-p_2) \cdots (1 - p_n)$ | $1-[(1 - p_1)(1-p_2) \cdots (1 - p_n)]$ |
(b) $(1 -p_1)(1-p_2)$ | $1-[(1 -p_1)(1-p_2)]$ |
(c) $(p_1-p_2)$ | $1-(p_1-p_2)$ |
(d) none of these |
Probability - Part 2
Solution: