Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ {{E}_{1}},{{E}_{2}} $ be two mutually exclusive events of an experiment with $ P(not\,{{E}_{2}})=0.6=P({{E}_{1}}\cup {{E}_{2}}). $ Then $ P({{E}_{1}}) $ is equal to

J & K CETJ & K CET 2008Probability

Solution:

Given, $ P({{\bar{E}}_{2}})=0.6=P({{E}_{1}}\cup {{E}_{2}}) $
Since, $ {{E}_{1}},\,\,{{E}_{2}} $ are mutually exclusive events, then
$ P({{E}_{1}}\cap {{E}_{2}})=0 $
Now, $ P({{E}_{1}}\cup {{E}_{2}})=P({{E}_{1}})+P({{E}_{2}})-P({{E}_{1}}\cap {{E}_{2}}) $
$ \Rightarrow $ $ 0.6\,=\,P({{E}_{1}})+1-P({{\bar{E}}_{2}})-0 $
$ \Rightarrow $ $ 0.6=P({{E}_{1}})+0.4 $
$ \Rightarrow $ $ P({{E}_{1}})=0.2 $