Thank you for reporting, we will resolve it shortly
Q.
Let $[.] $ denote greatest integer function. If $f(x)=[x]$ and $g(x)=3\left[\frac{x}{3}\right]$, then the set of all real $x$ such
that $f(x)=g(x)$ is
TS EAMCET 2020
Solution:
We have, $\& f(x)=[x]$ and $g(x)=3\left[\frac{x}{3}\right]$
Given, $f(x)=g(x)$
$\therefore [x]=3\left[\frac{x}{3}\right]$
Here, $[x]$ and $\left[\frac{x}{3}\right]$ is an integers
Let $\left[\frac{x}{3}\right]=k$
$\because[x]=3 k$
$\because x \in[3 k, 3 k+1)$
$\{x \in R / 3 k \leq x<3 k+1, k \in Z\}$