Q. Let $\Delta OAB$ be an equilateral triangle with side length unity ( $O$ being the origin). Also, $M$ and $N$ are the points of trisection of $AB$ , $M$ being closer to $A$ and $N$ being closer to $B$ . Position vectors of $A, \, B, \, M$ and $N$ are $\overset{ \rightarrow }{a}, \, \overset{ \rightarrow }{b}, \, \overset{ \rightarrow }{m}$ and $\overset{ \rightarrow }{n}$ respectively, then the value of $\overset{ \rightarrow }{m}\cdot \overset{ \rightarrow }{n}$ is equal to
NTA AbhyasNTA Abhyas 2020Vector Algebra
Solution: