Q.
Let $d$ be the number of integers in the range of the function $f(x)=\begin{cases}4, & \text { if }-4 \leq x< -2 \\ |x|, & \text { if }-2 \leq x< 7 \\ \sqrt{x}, & \text { if } 7 \leq x< 14\end{cases}.$.
Also roots of $P ( x )= x ^2+ mx -4 m +20$ are $\alpha$ and $\beta$. If $\alpha<\frac{ d -3}{4}< \frac{ d -3}{2}< \beta$ and the smallest integral value of $m$ is $k$, then find the value of $( k -5)$.
Relations and Functions - Part 2
Solution: