Q.
Let $D _1=\begin{vmatrix}x & a & b \\ -1 & 0 & x \\ x & 2 & 1\end{vmatrix}$ and $D _2=\begin{vmatrix}cx ^2 & 2 a & - b \\ x & 2 & 1 \\ -1 & 0 & x \end{vmatrix}$.
If all the roots of the equation $\left(x^2-4 x-7\right)\left(x^2-2 x-3\right)=0$ satisfies the equation $D_1+D_2=0$ then find the value of $(a+4 b+c)$.
Determinants
Solution: