Q.
Let curve $f(x, y)$ is locus of point $(x, y)$ which satisfy
$\begin{vmatrix}2 x & 2 y & 6 \\ \alpha & 2 \beta & 3 \lambda \\ -1 & 2 & 1\end{vmatrix}+2\begin{vmatrix} x & y & 1 \\ 4 \lambda & 2 \alpha & 3 \beta \\ 2 & -1 & 2\end{vmatrix}+\begin{vmatrix}11 & -2 \lambda \\ 72 & 2\alpha\end{vmatrix}-81 \beta$
$=0 \forall \alpha, \beta, \gamma \in R$. If minimum distance between curve $f(x, y)$ and line $4 x-3 y+12=0$ is $d$, then the value of $d$ is
Determinants
Solution: