Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $C _{ r }$ 's denote the combinational coefficients in the expansion of the binomial $(1+ x )^{14}$, then the value of the sum $\displaystyle\sum_{ r =1}^{15} r \cdot C _{ r -1}$ is

Binomial Theorem

Solution:

$ S =1 \cdot C _0+2 \cdot C _1+3 \cdot C _2+\ldots \ldots .+15 \cdot C _{14}$
$Re$-writing the sum as reverse order
$S =15 \cdot C _0+14 C _1+13 C _2+\ldots \ldots+ C _{14^*}$
____________________________
$2 S =16\left[ C _0+ C _1+ C _2+\ldots \ldots+ C _{14}\right]=16 \cdot 2^{14} $
$S =2^3 \cdot 2^{14}=2^{17} \Rightarrow( B )$