Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $O$ be the origin and let $P Q R$ be an arbitrary triangle. The point $S$ is such that
$\overrightarrow{O P} \cdot \overrightarrow{O Q}+\overrightarrow{O R} \cdot \overrightarrow{O S}=\overrightarrow{O R} \cdot \overrightarrow{O P}+\overrightarrow{O Q} \cdot \overrightarrow{O S}=\overrightarrow{O Q} \cdot \overrightarrow{O R}+\overrightarrow{O P} \cdot \overrightarrow{O S}$
Then the triangle $P Q R$ has $S$ as its

JEE AdvancedJEE Advanced 2017Vector Algebra

Solution:

$\overrightarrow{ OP } \cdot \overrightarrow{ OQ }+\overrightarrow{ OR } \cdot \overrightarrow{ OS }=\overrightarrow{ OR } \cdot \overrightarrow{ OP }+\overrightarrow{ OQ } \cdot \overrightarrow{ OS }$
$\Rightarrow \overrightarrow{ OP } \cdot(\overrightarrow{ OQ }-\overrightarrow{ OR })=\overrightarrow{ OS } \cdot(\overrightarrow{ OQ }-\overrightarrow{ OR })$
$\Rightarrow (\overrightarrow{ OP }-\overrightarrow{ OS }) \cdot(\overrightarrow{ RQ })=0$
$(\overrightarrow{ SP }) \cdot(\overrightarrow{ RQ })=0$
$\Rightarrow \overrightarrow{ SP } \perp \overline{ RQ }$
Similarly $\overrightarrow{ SR } \perp \overrightarrow{ QP }$ and $\overrightarrow{ SQ } \perp \overrightarrow{ PR }$
Hence, $S$ is orthocentre