Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $B , C , P$ and $L$ be positive real numbers such that $\log (B \cdot L)+\log (B \cdot P)=2 ; \quad \log (P \cdot L)+\log (P \cdot C)=3 ; \quad \log (C \cdot B)+\log (C \cdot L)=4$ The value of the product (BCPL) equals (base of the $\log$ is 10 )

Continuity and Differentiability

Solution:

Given $ 2 \log B +\log L +\log P =2 $ ....(1)
$ 2 \log P +\log L +\log C =3 \ldots . .(2) $
$\text { and } 2 \log C +\log B +\log L =4$.....(3)
$\text { add } \log \left( B ^3 C ^3 P ^3 L ^3\right)=9$
$\Rightarrow \log ( BCPL )=3 \Rightarrow BCPL =1000$