Q.
Let $\alpha \in R$ be such that the function
$f(x)=\begin{cases} \frac{\cos ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^{3}}, x \neq 0 \\ \alpha, \,\,\,\,\, x=0\end{cases}$
is continuous at $x=0$, where $\{x\}=x-[x],[x]$ is the greatest integer less than or equal to $X$. Then:
Solution: