Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\alpha \in \left(0 , \frac{\pi }{2}\right)$ and $f\left(x\right)=\sqrt{x^{2} + x}+\frac{\left(tan\right)^{2} \alpha }{\sqrt{x^{2} + x}},x>0$ . If the least value of $f\left(x\right)$ is $2\sqrt{3},$ then $\alpha $ is equal to

NTA AbhyasNTA Abhyas 2020Sequences and Series

Solution:

By AM-GM inequality
$\sqrt{x^{2} + x}+\frac{tan^{2} \alpha }{\sqrt{x^{2} + x}}\geq 2\cdot \sqrt{\sqrt{x^{2} + x} \cdot \frac{tan^{2} \alpha }{\sqrt{x^{2} + x}}}=2tan\alpha $
Since the least value of $f\left(x\right)$ is $2tan \alpha =2\sqrt{3}$ (given)
Hence, $\alpha =\frac{\pi }{3}$