Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let
$\alpha=\displaystyle\sum_{ k =1}^{\infty} \sin ^{2 k }\left(\frac{\pi}{6}\right)$
Let $g:[0,1] \rightarrow R$ be the function defined by
$g(x)=2^{\alpha x}+2^{\alpha(1-x)}$
Then, which of the following statements is/are TRUE?

JEE AdvancedJEE Advanced 2022

Solution:

$ \alpha=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^6+\ldots$
$ \alpha=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3} $
$ \therefore g ( x )=2^{ x / 3}+2^{1 / 3(1- x )} $
$ \therefore g ( x )=2^{ x / 3}+\frac{2^{1 / 3}}{2^{x / 3}} $
where $g(0)=1+2^{1 / 3} \& g (1)=1+2^{1 / 3}$
$\therefore g ^{\prime}( x )=\frac{1}{3}\left(2^{ x / 3}-\frac{2^{1 / 3}}{2^{x / 3}}\right)=0 $
$ \Rightarrow 2^{2 x / 3}=2^{1 / 3} \Rightarrow x =\frac{1}{2}=$ critical point
image