Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\alpha, \beta, \gamma$ be the roots of $(x-a)(x-b)(x-c)=d, d \neq 0$, then the roots of the equation $(x-\alpha)(x-\beta)(x-\gamma)+d=0$ are :

Complex Numbers and Quadratic Equations

Solution:

Clearly $(x-a)(x-b)(x-c)-d$
$=(x-\alpha)(x-\beta)(x-\gamma)$
$\therefore$ if $\alpha, \beta, \gamma$ are the roots of given equation
then $(x-\alpha)(x-\beta)(x-\gamma)+d=0$
will have roots $a, b, c.$