Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\alpha, \beta, \gamma$ be the roots of the equation $(x-a)(x-b)(x-c)=d,(d \neq 0)$, then the roots of the equation $(x-\alpha)(x-\beta)(x-\gamma)+d=0$, is

Complex Numbers and Quadratic Equations

Solution:

$( x - a )( x - b )( x - c )- d =( x -\alpha)( x -\beta)( x -\gamma)$
$\Rightarrow( x -\alpha)( x -\beta)( x -\gamma)+ d =( x - a )( x - b )( x - c ) $
$ \Rightarrow a , b , c$