Q.
Let $\alpha, \beta, \gamma$ be distinct real numbers such that
$a \alpha^2+ b \alpha+ c =(\sin \theta) \alpha^2+(\cos \theta) \alpha $
$a \beta^2+ b \beta+ c =(\sin \theta) \beta^2+(\cos \theta) \beta$
$a \gamma^2+ b \gamma+ c =(\sin \theta) \gamma^2+(\cos \theta) \gamma$
(where a, b, c, $\in$ R.)
The maximum value of the expression $\frac{a^2+b^2}{a^2+3 a b+5 b^2}$ is equal to
Complex Numbers and Quadratic Equations
Solution: