Q. Let $\alpha, \beta, \gamma$ are the real roots of the equation $x^3+a x^2+b x+c=0(a, b, c \in R$ and $a \neq 0)$. If the system of equations (in $u, v$ and $w$ ) given by $\alpha u+\beta v+\gamma w=0 ; \beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ has non-trivial solutions, then $a ^2$ equals
Determinants
Solution: