Q.
Let $\alpha, \beta, \gamma$ and $\delta$ be 4 distinct roots of the equation $x^4-4 x+3=x\left(x^3-f^{\prime}(1) x^2+f^{\prime \prime}(1) x-4\right)+f(1)$ and $f ( x )$ is a monic polynomial of degree 3 .
If $\int \frac{ dx }{\frac{ f ( x )-3}{ x -1}+4}=\frac{1}{2} g ( x )+ C$, where $C$ is constant of integration and $g (3)=\frac{\pi}{4}$, then the value of $g(5)+g(7)$ is
Integrals
Solution: