Q. Let $\alpha, \beta$ be the roots of the equation $x^2-\sqrt{2} x+\sqrt{6}=0$ and $\frac{1}{\alpha^2}+1, \frac{1}{\beta^2}+1$ be the roots of the equation $x^2+a x+b=0$. Then the roots of the equation $x^2-(a+b-2)$ $x +( a + b +2)=0$ are :
Solution: