Q. Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ and $g: R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_1, a_2, a_3, \ldots, a_n$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \displaystyle\sum_{i=1}^n f\left(a_i\right)\right)\right)$ is equal to :
Solution: