Q. Let $\alpha$ be a fixed constant number such that $0<\alpha< \frac{\pi}{2}$. The function $F$ is defined by $F(\theta)=\int\limits_0^\theta x \cos (x+\alpha) d x$. If $\theta$ lies in the range of $\left[0, \frac{\pi}{2}\right]$, then the maximum value of $F(\theta)$, is
Application of Derivatives
Solution: