Q. Let $\alpha$ and $\beta$ be two real roots of the equation $\left(k+1\right)tan^{2}x-\sqrt{2}\cdot\lambda tan x = \left(1-k\right)$, where $k\left(\ne -1\right)$ and $\lambda$ are real numbers. If $tan^{2} \left(\alpha + \beta \right)= 50$, then a value of $\lambda$ is :
Solution: