Q. Let $\alpha$ and $\beta$ be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1 .$ Let $p _{ n }=(\alpha)^{ n } (\beta)^{ n }$ $p _{ n -1}=11$ and $p _{ n +1}=29$ for some integer $n \geq 1$. Then, the value of $p _{ n }^{2}$ is _______.
Solution: