Q. Let $\alpha$ and $\beta$ be 2 real numbers which satisfy the equations $ \cot ^2 \alpha-\operatorname{cosec}^2 \beta=\frac{2 k }{3}-5 \text { and }-\operatorname{cosec}^2 \alpha+\cot ^2 \beta=\frac{ k ^2}{2}, $ then sum of all possible value(s) of $k$ is equal to
Complex Numbers and Quadratic Equations
Solution: