Q. Let $\alpha $ and $\beta $ are the roots of equation $ax^{2}+bx+c=0\left(a \neq 0\right).$ If $1,\alpha +\beta ,\alpha \beta $ are in arithmetic progression and $\alpha ,2,\beta $ are in harmonic progression, then the value of $\frac{\left(\alpha \right)^{2} + \left(\beta \right)^{2} - 2 \left(\alpha \right)^{2} \left(\beta \right)^{2}}{2 \left(\left(\alpha \right)^{2} + \left(\beta \right)^{2}\right)}$ is equal to
NTA AbhyasNTA Abhyas 2022
Solution: