Q. Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1) x^{2}+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$ where $a>-1$. Then $\lim _{a \rightarrow o^{+}} \alpha(a)$ and $\lim _{a \rightarrow o^{+}} \beta(a)$ are
AIEEEAIEEE 2012
Solution: