Q. Let $\alpha=2 \tan ^{-1} \frac{1}{2}+\sin ^{-1} \frac{3}{5}$ and $\beta=\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\cot ^{-1} \frac{16}{63}$ be such that $2 \sin \alpha$ and $\cos \beta$ are roots of the equation $x^2-p x+q=0$, then find $(p-q)$.
Inverse Trigonometric Functions
Solution: