Q. Let $\left(\alpha_1, \beta_1\right),\left(\alpha_2, \beta_2\right),\left(\alpha_3, \beta_3\right)$ be vertices of a $\triangle ABC$ with $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ are prime values of $k$ in increasing order for which one root of equation $(k-5) x^2-2 k x+k-4=0$ is smaller than 1 and other exceed 2 . If $P ( p , q )$ is a point inside the triangle such that area of $\triangle PAC =$ area of $\triangle PAB =$ area of $\triangle PBC$, then find the value of $\left(\frac{ p + q }{10}\right)$.
Straight Lines
Solution: