Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A B C D$ be a parallelogram. If
$A B =\hat{ i }+3 \hat{ j }+7 \hat{ k }, A D =2 \hat{ i }+3 \hat{ j }-5 \hat{ k }$ and $p$ is a unit vector parallel to $A C$, then $p$ is equal to

KEAMKEAM 2015Vector Algebra

Solution:

$ AC = AB + AD $
$=(\hat{ i }+3 \hat{ j }+7 \hat{ k })+(2 \hat{ i }+3 \hat{ j }-5 \hat{ k }) $
$=3 \hat{ i }+6 \hat{ j }+2 \hat{ k } $
image
Now, $p$ is a unit vector parallel to AC
Then, $ p =\frac{ AC }{| AC |} $
$=\frac{3 \hat{ i }+6 \hat{ j }+2 \hat{ k }}{\sqrt{9+36+4}} $
$\Rightarrow p =\frac{1}{7}(3 \hat{ i }+6 \hat{ j }+2 \hat{ k })$