Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ABC$ be an isosceles triangle with $BC$ as its base. Then, $r r_{1}=$

TS EAMCET 2018

Solution:

We have, $ABC$ be an isosceles triangle, $B C$ as its base.
$\therefore \, \angle B=\angle C$
image
We know that,
$r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
$r_{1} =4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
$\therefore \, r r_{1} =16 R^{2} \sin ^{2} \frac{A}{2} \sin \frac{B}{2} \cos \frac{B}{2} \sin \frac{C}{2} \cos \frac{C}{2} $
$=4 R^{2} \sin ^{2} \frac{A}{2} \cdot \sin B \sin C $
$=4 R^{2} \sin ^{2} \frac{A}{2} \cdot \sin ^{2} B \, [\because \angle B=\angle C] $
$=4 R^{2} \sin ^{2} \frac{A}{2} \sin ^{2}\left(\frac{\pi}{2}-\frac{A}{2}\right)$
$=4 R^{2} \sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}$
$=R^{2}\left(2 \sin \frac{A}{2} \cos \frac{A}{2}\right)^{2}=R^{2} \sin ^{2}\, A$