Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ABC be an acute-angled triangle and let D be the mid-point of BC. If AB = AD, then tan(B ) / tan (C) equals
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $ABC$ be an acute-angled triangle and let $D$ be the mid-point of $BC$. If $AB = AD$, then $\tan(B ) / \tan (C)$ equals
KVPY
KVPY 2013
A
$\sqrt{2}$
B
$\sqrt{3}$
C
$2$
D
$3$
Solution:
Given, in $\Delta ABC, D$ is mid-point of $BC$ and $AB = AD$
$\therefore \angle B = \angle ADB$
$\theta = \pi - \angle ADB = \pi - B$
$BD = DC = 1 : 1$
Apply $(m-n) $ theorem,
$( m + n ) \cot \,\theta = n\, \cot\,B - m\,\cot \,C$
$\Rightarrow (1 + 1) \cot \,(\pi - B ) = \cot \,B - \cot \,C$
$[\because m = n = 1]$
$\Rightarrow -2 \,\cot \,B = \cot \,B - \cot\,C$
$[\because \cot \,(\pi - B) = - \cot\,B]$
$\Rightarrow 3\,\cot\,B = \cot\,C$
$\Rightarrow \frac{\tan\,B}{\tan\,C} = 3$