Let $A$ = {$\theta$: sin $\theta$ = tan $\theta$}
and $B$ = {$\theta$: cos$\theta$= 1}
Now, $A$ = $\left\{\theta:sin \, \theta=\frac{sin\, \theta}{cos \, \theta}\right\}$
= {$\theta$: sin $\theta$ (cos $\theta$ -1) = 0}
= {$\theta$=0, $\pi$,2$\pi$3$\pi$.....}
For $B$ : $cos \theta = 1$ $\Rightarrow \theta=\pi, 2\pi, 4\pi,$.......
This shows that $A$ is not contained in $B$. i.e.
$A ⊄ B. \, but \, B\subset A.\quad$