Q. Let a set $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k^{\prime}}$ where $A_{i} \cap A_{j}=\phi$ for $i \neq j 1 \leq i, j \leq k$. Define the relation $R$ from $A$ to $A$ by $R=\left\{(x, y): y \in A_{i}\right.$ if and only if $\left.x \in A_{i}, 1 \leq i \leq k\right\}$. Then, $R$ is :
Solution: