Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let a random variable $X$ have a binomial distribution with mean $8$ and variance $4$.
If $P(x \le 2) = \frac{k}{2^{16}}$, then $k$ is equal to :

JEE MainJEE Main 2019Probability - Part 2

Solution:

$np = 8 $
$ npq = 4 $
$ q = \frac{1}{2} \Rightarrow \; p = \frac{1}{2} $
$ n = 16 $
$ p\left(x=r\right) = ^{16}C_{r} \left(\frac{1}{2}\right)^{16} $
$ p\left(x\le2\right) = \frac{^{16}C_{0} + ^{16}C_{1} +^{16}C_{2}}{2^{16}} $
$ = \frac{137}{2^{16}} $