Q.
Let a plane $P$ contain two lines $\vec{ r }=\hat{ i }+\lambda(\hat{ i }+\hat{ j }), \lambda \in R$ and $\vec{ r }=-\hat{ j }+\mu(\hat{ j }-\hat{ k }), \mu \in R$
If $Q (\alpha, \beta, \gamma)$ is the foot of the perpendicular
drawn from the point $M (1,0,1)$ to $P $, then $3(\alpha+\beta+\gamma)$ equals____.
Solution: