Q. Let a line with direction ratios $a ,-4 a ,-7$ be perpendicular to the lines with direction ratios $3,-1,2 b$ and $b, a,-2$. If the point of intersection of the line $\frac{ x +1}{ a ^2+ b ^2}=\frac{ y -2}{ a ^2- b ^2}=\frac{ z }{1}$ and the plane $x-y+z=0$ is $(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma$ is equal to
Solution: