Q. Let $\left\{a_k\right\}$ and $\left\{b_k\right\}, k \in N$, be two G.P.s with common ratio $r_1$ and $r_2$ respectively such that $a_1=b_1=4$ and $r_1< r_2$. Let $c_k=a_k+b_k, k \in N$. If $c _2=5$ and $c _3=\frac{13}{4}$ then $\displaystyle\sum_{ k =1}^{\infty} c _{ k }-\left(12 a _6+8 b _4\right)$ is equal to
Solution: