We know that.
$| a - b |^{2}=( a - b ) \cdot( a - b ) $
$\Rightarrow | a - b |^{2}=| a |^{2}+| b |^{2}-2 a \cdot b $
$\Rightarrow (\sqrt{7})^{2}=\left[\left.\sqrt{(1)^{2}+(-2)^{2}+(3)^{2}}\right|^{2}+| b |^{2}-2| b |^{2}\right.$
$\Rightarrow 7 =14-| b |^{2} $
$\Rightarrow | b |^{2}=7$
$ \Rightarrow | b |=\sqrt{7}$