Q.
Let a function $f: R \rightarrow R$ be defined as $f(x)=\begin{cases} \sin x-e^{x} & \text { if } x \leq 0 \\ a+[-x] & \text { if } 0 < x < 1 \\ 2 x-b & \text { if } x \geq 1\end{cases}$
Where $[x]$ is the greatest integer less than or equal to $x$. If $f$ is continuous on $R$, then $(a+b)$ is equal to:
Solution: