Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let a function $f: R \rightarrow R$ be defined as $f(x)=\begin{cases} \sin x-e^{x} & \text { if } x \leq 0 \\ a+[-x] & \text { if } 0 < x < 1 \\ 2 x-b & \text { if } x \geq 1\end{cases}$
Where $[x]$ is the greatest integer less than or equal to $x$. If $f$ is continuous on $R$, then $(a+b)$ is equal to:

JEE MainJEE Main 2021Continuity and Differentiability

Solution:

Continuous at $x=0$
$f\left(0^{+}\right)=f\left(0^{-}\right) \Rightarrow a-1=0-e^{0} $
$\Rightarrow a=0$
Continuous at $x=1$
$f\left(1^{+}\right)=f\left(1^{-}\right)$
$\Rightarrow 2(1)-b=a+(-1)$
$\Rightarrow b=2-a+1 \Rightarrow b=3$
$\therefore a+b=3$