Thank you for reporting, we will resolve it shortly
Q.
Let a complex number be $w =1-\sqrt{3} i$. Let another complex number $z$ be such that $| zw |=1$ and $\arg ( z )-\arg ( w )=\frac{\pi}{2}$. Then the area of the triangle with vertices origin, $z$ and $w$ is equal to :
JEE MainJEE Main 2021Complex Numbers and Quadratic Equations
Solution:
$w =1-\sqrt{3} . i \Rightarrow | w |=2$
Now, $| z |=\frac{1}{| w |} \Rightarrow | z |=\frac{1}{2}$
and $\operatorname{amp}( z )=\frac{\pi}{2}+\operatorname{amp}( w )$
$\Rightarrow $ Area of triangle
$=\frac{1}{2} \cdot OP.OQ$
$=\frac{1}{2} \cdot 2 \cdot \frac{1}{2}=\frac{1}{2}$