Q.
Let $A=\begin{bmatrix}\beta \gamma-\alpha^2 & \gamma \alpha-\beta^2 & \alpha \beta-\gamma^2 \\ \gamma \alpha-\beta^2 & \alpha \beta-\gamma^2 & \beta \gamma-\alpha^2 \\ \alpha \beta-\gamma^2 & \beta \gamma-\alpha^2 & \gamma \alpha-\beta^2\end{bmatrix}$ where $\alpha, \beta, \gamma$ are roots of the equation $x^3-2 x^2+2 x-3=0$ Now, consider $f(x)=|A-x I|$, where $I$ is identity matrix of order 3 .
The sum of the roots of the equation $f(x)=0$, is-
Matrices
Solution: