Q. Let $A$ be a point inside a regular polygon of 10 sides. Let $p _1, p _2, \ldots \ldots \ldots \ldots \ldots . \ldots p _{10}$ be the distances of A from the sides of the polygon. If each side is of length 2 then find the minimum possible integral value f $\frac{1}{p_1}+\frac{1}{p_2}+\ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{ p _{10}}$.
Sequences and Series
Solution: