Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $A$ be $3 \times 3$ matrix given by $A=\left[a_{i j}\right]$ and $B$ be a column vector such that $B^{\top} A B$ is a null matrix for every column vector $B$. If $C=A-A^{\top}$ and $a_{13}=1, a_{23}=-5, a_{21}=15$, then find the value of $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} C)$. ,br/>[Note : adj $M$ denotes the adjoint of a square matrix $M$.]

Matrices

Solution:

Correct answer is '0'