Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let a,bR and a2+b20. Suppose S={zC:z=1a+ibt,tR,t0}, where i=1 If z=x+iy and zS, then (x,y) lies on

JEE AdvancedJEE Advanced 2016

Solution:

z=x+iy=1a+ibt=aibta2+b2t2
x=aa2+b2t2,y=bta2+b2t2

\Rightarrow t=\frac{-a y}{b x}
S o x\left(a^{2}+b^{2} \frac{a^{2} y^{2}}{b^{2} x^{2}}\right)=a
a^{2} x^{2}+a^{2} y^{2}=a x
x^{2}+y^{2}=\frac{x}{a}
\Rightarrow \left(x-\frac{1}{2 a}\right)^{2}+y^{2}=\frac{1}{4 a^{2}}
circle with centre \left(\frac{1}{2 a }, 0\right) and radius =\frac{1}{2 a }
for a >0, b \neq 0
If b =0, a \neq 0
x + iy =\frac{1}{ a }
\Rightarrow x =\frac{1}{ a }, \,\,\,y =0
So x-axis
If a=0, b \neq 0
x+i y=\frac{1}{i b t}
\Rightarrow x=0 ; y=-\frac{1}{b t}
So y-axis