Q. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$. Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$ If $z=x+i y$ and $z \in S$, then $(x, y)$ lies on
JEE AdvancedJEE Advanced 2016
Solution: