z=x+iy=1a+ibt=a−ibta2+b2t2 x=aa2+b2t2,y=−bta2+b2t2 ∴ \Rightarrow t=\frac{-a y}{b x} S o x\left(a^{2}+b^{2} \frac{a^{2} y^{2}}{b^{2} x^{2}}\right)=a a^{2} x^{2}+a^{2} y^{2}=a x x^{2}+y^{2}=\frac{x}{a} \Rightarrow \left(x-\frac{1}{2 a}\right)^{2}+y^{2}=\frac{1}{4 a^{2}}
circle with centre \left(\frac{1}{2 a }, 0\right) and radius =\frac{1}{2 a }
for a >0, b \neq 0
If b =0, a \neq 0 x + iy =\frac{1}{ a } \Rightarrow x =\frac{1}{ a }, \,\,\,y =0
So x-axis
If a=0, b \neq 0 x+i y=\frac{1}{i b t} \Rightarrow x=0 ; y=-\frac{1}{b t}
So y-axis