Q. Let $a, b, c \in R$ be such that $a^{2}+b^{2}+c^{2}=1$ If a $\cos \theta=b \cos \left(\theta+\frac{2 \pi}{3}\right)=c \cos \left(\theta+\frac{4 \pi}{3}\right)$, where $\theta=\frac{\pi}{9}$, then the angle between the vectors $a \hat{i}+b \hat{j}+c \hat{k}$ and $b \hat{i}+c \hat{j}+a \hat{k}$ is :
Solution: