Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $a, b, c \in R$ be such that $2 a+3 b+6 c=0$ and $g(x)$ be the anti derivative of $f(x)=a x^{2}+b x +c .$ If the slopes of the tangents drawn to the curve $y=g(x)$ at $(1, g( l ))$ and $(2, g(2))$ are equal, then

TS EAMCET 2019

Solution:

We have,
$2 a + 3 b + 6 c=0$ ...(i)
$g(x)$ is anti derivative of $f(x)=a x^{2}+b x+ c$
$\therefore g'(x)=a x^{2}+ b x +c$
Given, $g'(1) =g'(2)$
$\Rightarrow a+ b +c =4 a+2 b +c$
$\Rightarrow 3 a +b =0$ ...(ii)
From Eqs. (i) and (ii), we get
$\frac{a}{-6}=\frac{b}{18}=\frac{c}{-7}$
$\Rightarrow \frac{a}{6}=\frac{b}{-18}=\frac{c}{7}$