Q.
Let $A , B , C$ be three points whose position vectors respectively are:
$\overrightarrow{ a }=\hat{ i }+4 \hat{ j }+3 \hat{ k } $
$\overrightarrow{ b }=2 \hat{ i }+\alpha \hat{ j }+4 \hat{ k }, \alpha \in R $
$\overrightarrow{ c }=3 \hat{ i }-2 \hat{ j }+5 \hat{ k }$
If $\alpha$ is the smallest positive integer for which $\vec{a}, \vec{b}, \vec{c}$ are non-collinear, then the length of the median, in $\triangle ABC$, through $A$ is:
Solution: